Skip to content

Agents

Agent

Bases: BaseModel, ABC

Represents a customizable agent that can interact with environments, employ skills, and leverage memory and runtimes.

Attributes:

Name Type Description
environment Environment

The environment with which the agent interacts.

skills SkillSet

The skills possessed by the agent.

memory LongTermMemory

The agent's long-term memory. Defaults to None.

runtimes Dict[str, Runtime]

The runtimes available to the agent. Defaults to predefined runtimes.

default_runtime str

The default runtime used by the agent. Defaults to 'openai'.

teacher_runtimes Dict[str, Runtime]

The runtimes available to the agent's teacher. Defaults to predefined runtimes.

default_teacher_runtime str

The default runtime used by the agent's teacher. Defaults to 'openai-gpt3'.

Examples:

>>> from adala.environments import StaticEnvironment
>>> from adala.skills import LinearSkillSet, TransformSkill
>>> from adala.agents import Agent
>>> agent = Agent(skills=LinearSkillSet(skills=[TransformSkill()]), environment=StaticEnvironment())
>>> agent.learn()  # starts the learning process
>>> predictions = agent.run()  # runs the agent and returns the predictions
Source code in adala/agents/base.py
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
class Agent(BaseModel, ABC):
    """
    Represents a customizable agent that can interact with environments,
    employ skills, and leverage memory and runtimes.

    Attributes:
        environment (Environment): The environment with which the agent interacts.
        skills (SkillSet): The skills possessed by the agent.
        memory (LongTermMemory, optional): The agent's long-term memory. Defaults to None.
        runtimes (Dict[str, Runtime], optional): The runtimes available to the agent. Defaults to predefined runtimes.
        default_runtime (str): The default runtime used by the agent. Defaults to 'openai'.
        teacher_runtimes (Dict[str, Runtime], optional): The runtimes available to the agent's teacher. Defaults to predefined runtimes.
        default_teacher_runtime (str): The default runtime used by the agent's teacher. Defaults to 'openai-gpt3'.

    Examples:
        >>> from adala.environments import StaticEnvironment
        >>> from adala.skills import LinearSkillSet, TransformSkill
        >>> from adala.agents import Agent
        >>> agent = Agent(skills=LinearSkillSet(skills=[TransformSkill()]), environment=StaticEnvironment())
        >>> agent.learn()  # starts the learning process
        >>> predictions = agent.run()  # runs the agent and returns the predictions
    """

    environment: Optional[SerializeAsAny[Union[Environment, AsyncEnvironment]]] = None
    skills: SerializeAsAny[SkillSet]

    memory: Memory = Field(default=None)
    runtimes: Dict[str, SerializeAsAny[Union[Runtime, AsyncRuntime]]] = Field(
        default_factory=lambda: {"default": OpenAIChatRuntime(model="gpt-3.5-turbo")}
    )
    default_runtime: str = "default"
    teacher_runtimes: Dict[str, SerializeAsAny[Union[Runtime, AsyncRuntime]]] = Field(
        default_factory=lambda: {"default": None}
    )
    default_teacher_runtime: str = "default"

    class Config:
        arbitrary_types_allowed = True

    def __rich__(self) -> str:
        """
        Returns a colorized and formatted representation of the Agent instance.

        Returns:
            str: A rich-formatted representation of the agent.
        """

        skill_names = ", ".join([skill.name for skill in self.skills.skills.values()])
        runtime_names = ", ".join(self.runtimes.keys())

        return (
            f"[bold blue]Agent Instance[/bold blue]\n\n"
            f"Environment: {self.environment.__class__.__name__}\n"
            f"Skills: {skill_names}\n"
            f"Runtimes: {runtime_names}\n"
            f"Default Runtime: {self.default_runtime}\n"
            f"Default Teacher Runtime: {self.default_teacher_runtime}"
        )

    @field_validator("environment", mode="before")
    def environment_validator(cls, v) -> Environment:
        """
        Validates and possibly transforms the environment attribute:
        if the environment is an InternalDataFrame, it is transformed into a StaticEnvironment.
        """
        logger.debug(f"Validating environment attribute: {v}")
        if isinstance(v, InternalDataFrame):
            v = StaticEnvironment(df=v)
        elif isinstance(v, dict) and "type" in v:
            v = Environment.create_from_registry(v.pop("type"), **v)
        return v

    @field_validator("skills", mode="before")
    def skills_validator(cls, v) -> SkillSet:
        """
        Validates and possibly transforms the skills attribute.
        """
        if isinstance(v, SkillSet):
            return v
        elif isinstance(v, Skill):
            return LinearSkillSet(skills=[v])
        elif isinstance(v, list):
            return LinearSkillSet(skills=v)
        else:
            raise ValueError(
                f"skills must be of type SkillSet or Skill, but received type {type(v)}"
            )

    @field_validator("runtimes", "teacher_runtimes", mode="before")
    def runtimes_validator(cls, v) -> Dict[str, Union[Runtime, AsyncRuntime]]:
        """
        Validates and creates runtimes
        """
        out = {}
        for runtime_name, runtime_value in v.items():
            if isinstance(runtime_value, dict):
                if "type" not in runtime_value:
                    raise ValueError(
                        f"Runtime {runtime_name} must have a 'type' field to specify the runtime type."
                    )
                type_name = runtime_value.pop("type")
                runtime_value = Runtime.create_from_registry(
                    type=type_name, **runtime_value
                )
            out[runtime_name] = runtime_value
        return out

    @model_validator(mode="after")
    def verify_input_parameters(self):
        """
        Verifies that the input parameters are valid."""

        def _raise_default_runtime_error(val, runtime, runtimes, default_value):
            print_error(
                f"The Agent.{runtime} is set to {val}, "
                f"but this runtime is not available in the list: {list(runtimes)}. "
                f"Please choose one of the available runtimes and initialize the agent again, for example:\n\n"
                f"agent = Agent(..., {runtime}='{default_value}')\n\n"
                f"Make sure the default runtime is available in the list of runtimes. For example:\n\n"
                f"agent = Agent(..., runtimes={{'{default_value}': OpenAIRuntime(model='gpt-4')}})\n\n"
            )
            raise ValueError(f"default runtime {val} not found in provided runtimes.")

        if self.default_runtime not in self.runtimes:
            _raise_default_runtime_error(
                self.default_runtime, "default_runtime", self.runtimes, "openai"
            )
        if self.default_teacher_runtime not in self.teacher_runtimes:
            _raise_default_runtime_error(
                self.default_teacher_runtime,
                "default_teacher_runtime",
                self.teacher_runtimes,
                "openai-gpt4",
            )
        return self

    def get_runtime(self, runtime: Optional[str] = None) -> Runtime:
        """
        Retrieves the specified runtime or the default runtime if none is specified.

        Args:
            runtime (str, optional): The name of the runtime to retrieve. Defaults to None.

        Returns:
            Runtime: The requested runtime.

        Raises:
            ValueError: If the specified runtime is not found.
        """

        if runtime is None:
            runtime = self.default_runtime
        if runtime not in self.runtimes:
            raise ValueError(f'Runtime "{runtime}" not found.')
        return self.runtimes[runtime]

    def get_teacher_runtime(self, runtime: Optional[str] = None) -> Runtime:
        """
        Retrieves the specified teacher runtime or the default runtime if none is specified.

        Args:
            runtime (str, optional): The name of the runtime to retrieve. Defaults to None.

        Returns:
            Runtime: The requested runtime.

        Raises:
            ValueError: If the specified runtime is not found.
        """

        if runtime is None:
            runtime = self.default_teacher_runtime
        if runtime not in self.teacher_runtimes:
            raise ValueError(f'Teacher Runtime "{runtime}" not found.')
        runtime = self.teacher_runtimes[runtime]
        if not runtime:
            raise ValueError(
                f"Teacher Runtime is requested, but it was not set."
                f"Please provide a teacher runtime in the agent's constructor explicitly:"
                f"agent = Agent(..., teacher_runtimes={{'default': OpenAIChatRuntime(model='gpt-4')}})"
            )
        return runtime

    def run(
        self, input: InternalDataFrame = None, runtime: Optional[str] = None, **kwargs
    ) -> InternalDataFrame:
        """
        Runs the agent on the specified dataset.

        Args:
            input (InternalDataFrame): The dataset to run the agent on.
            runtime (str, optional): The name of the runtime to use. Defaults to None, use the default runtime.
            kwargs: Additional keyword arguments to pass to the runtime.
        Returns:
            InternalDataFrame: The dataset with the agent's predictions.
        """
        if input is None:
            if self.environment is None:
                raise ValueError("input is None and no environment is set.")
            input = self.environment.get_data_batch(None)
        runtime = self.get_runtime(runtime=runtime)
        predictions = self.skills.apply(input, runtime=runtime)
        return predictions

    async def arun(
        self, input: InternalDataFrame = None, runtime: Optional[str] = None
    ) -> Optional[InternalDataFrame]:
        """
        Runs the agent on the specified input asynchronously.
        If no input is specified, the agent will run on the environment until it is exhausted.
        If input is specified, the agent will run on the input, ignoring the connected genvironment.

        Args:
            input (InternalDataFrame): The dataset to run the agent on.
            runtime (str, optional): The name of the runtime to use. Defaults to None, use the default runtime.

        Returns:
            InternalDataFrame: The dataset with the agent's predictions.
        """

        runtime = self.get_runtime(runtime=runtime)
        if not isinstance(runtime, AsyncRuntime):
            raise ValueError(
                "When using asynchronous run with `agent.arun()`, the runtime must be an AsyncRuntime."
            )
        else:
            print(f"Using runtime {type(runtime)}")

        if input is None:
            if self.environment is None:
                raise ValueError("input is None and no environment is set.")
            if not isinstance(self.environment, AsyncEnvironment):
                raise ValueError(
                    "When using asynchronous run with `agent.arun()` and noe input, the environment must be an AsyncEnvironment."
                )
            # run on the environment until it is exhausted
            while True:
                try:
                    data_batch = await self.environment.get_data_batch(
                        batch_size=runtime.batch_size
                    )
                    if data_batch.empty:
                        print_text("No more data in the environment. Exiting.")
                        break
                except Exception as e:
                    # TODO: environment should raise a specific exception + log error
                    print_error(f"Error getting data batch from environment: {e}")
                    break
                predictions = await self.skills.aapply(data_batch, runtime=runtime)
                await self.environment.set_predictions(predictions)

        else:
            # single run on the input data
            predictions = await self.skills.aapply(input, runtime=runtime)
            return predictions

    def select_skill_to_train(
        self, feedback: EnvironmentFeedback, accuracy_threshold: float
    ) -> Tuple[str, str, float]:
        """
        Selects the skill to train based on the feedback signal.

        Args:
            feedback (Feedback): The feedback signal.
            accuracy_threshold (float): The accuracy threshold to use for selecting the skill to train.

        Returns:
            str: The name of the skill to train.
            str: The name of the skill output to train.
            float: The accuracy score of the skill to train.

        """

        # Use ground truth signal to find the skill to improve
        # TODO: what if it is not possible to estimate accuracy per skill?
        accuracy = feedback.get_accuracy()
        train_skill_name, train_skill_output, acc_score = "", "", None
        for skill_output, skill_name in self.skills.get_skill_outputs().items():
            if skill_output in accuracy and accuracy[skill_output] < accuracy_threshold:
                train_skill_name, train_skill_output = skill_name, skill_output
                acc_score = accuracy[skill_output]
                break

        return train_skill_name, train_skill_output, acc_score

    def learn(
        self,
        learning_iterations: int = 3,
        accuracy_threshold: float = 0.9,
        update_memory: bool = True,
        batch_size: Optional[int] = None,
        num_feedbacks: Optional[int] = None,
        runtime: Optional[str] = None,
        teacher_runtime: Optional[str] = None,
    ):
        """
        Enables the agent to learn and improve its skills based on interactions with its environment.

        Args:
            learning_iterations (int, optional): The number of iterations for learning. Defaults to 3.
            accuracy_threshold (float, optional): The desired accuracy threshold to reach. Defaults to 0.9.
            update_memory (bool, optional): Flag to determine if memory should be updated after learning. Defaults to True.
            num_feedbacks (int, optional): The number of predictions to request feedback for. Defaults to None.
            runtime (str, optional): The runtime to be used for the learning process. Defaults to None.
            teacher_runtime (str, optional): The teacher runtime to be used for the learning process. Defaults to None.
        """

        runtime = self.get_runtime(runtime=runtime)
        teacher_runtime = self.get_teacher_runtime(runtime=teacher_runtime)

        for iteration in range(learning_iterations):
            print_text(
                f"\n\n=> Iteration #{iteration}: Getting feedback, analyzing and improving ..."
            )

            inputs = self.environment.get_data_batch(batch_size=batch_size)
            predictions = self.skills.apply(inputs, runtime=runtime)
            feedback = self.environment.get_feedback(
                self.skills, predictions, num_feedbacks=num_feedbacks
            )
            # TODO: this is just pretty printing - remove later for efficiency
            print("Predictions and feedback:")
            print_dataframe(
                feedback.feedback.rename(
                    columns=lambda x: x + "__fb" if x in predictions.columns else x
                ).merge(predictions, left_index=True, right_index=True)
            )
            # -----------------------------
            skill_mismatch = feedback.match.fillna(True) == False
            has_errors = skill_mismatch.any(axis=1).any()
            if not has_errors:
                print_text("No errors found!")
                continue
            first_skill_with_errors = skill_mismatch.any(axis=0).idxmax()

            accuracy = feedback.get_accuracy()
            # TODO: iterating over skill can be more complex, and we should take order into account
            for skill_output, skill_name in self.skills.get_skill_outputs().items():
                skill = self.skills[skill_name]
                if skill.frozen:
                    continue

                print_text(
                    f'Skill output to improve: "{skill_output}" (Skill="{skill_name}")\n'
                    f"Accuracy = {accuracy[skill_output] * 100:0.2f}%",
                    style="bold red",
                )

                old_instructions = skill.instructions
                skill.improve(
                    predictions, skill_output, feedback, runtime=teacher_runtime
                )

                if is_running_in_jupyter():
                    highlight_differences(old_instructions, skill.instructions)
                else:
                    print_text(skill.instructions, style="bold green")

                if skill_name == first_skill_with_errors:
                    break

        print_text("Train is done!")

    async def arefine_skill(
        self,
        skill_name: str,
        input_variables: List[str],
        data: Optional[List[Dict]] = None,
        reapply: bool = False,
        instructions: Optional[str] = None,
    ) -> ImprovedPromptResponse:
        """
        beta v2 of Agent.learn() that is:
        - compatible with the newer LiteLLM runtimes
        - compatible with the newer response_model output formats for skills
        - returns chain of thought reasoning in a legible format

        Limitations so far:
        - single skill at a time
        - only returns the improved input_template, doesn't modify the skill in place
        - no iterations/variable cost
        """

        skill = self.skills[skill_name]
        if not isinstance(skill, TransformSkill):
            raise ValueError(f"Skill {skill_name} is not a TransformSkill")

        # get default runtimes
        runtime = self.get_runtime()
        teacher_runtime = self.get_teacher_runtime()

        # get inputs
        # TODO: replace it with async environment.get_data_batch()
        if data is None:
            predictions = None
        else:
            inputs = InternalDataFrame.from_records(data or [])
            if reapply:
                predictions = await self.skills.aapply(inputs, runtime=runtime)
            else:
                predictions = inputs

        response = await skill.aimprove(
            predictions=predictions,
            teacher_runtime=teacher_runtime,
            target_input_variables=input_variables,
            instructions=instructions,
        )
        return response

__rich__()

Returns a colorized and formatted representation of the Agent instance.

Returns:

Name Type Description
str str

A rich-formatted representation of the agent.

Source code in adala/agents/base.py
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def __rich__(self) -> str:
    """
    Returns a colorized and formatted representation of the Agent instance.

    Returns:
        str: A rich-formatted representation of the agent.
    """

    skill_names = ", ".join([skill.name for skill in self.skills.skills.values()])
    runtime_names = ", ".join(self.runtimes.keys())

    return (
        f"[bold blue]Agent Instance[/bold blue]\n\n"
        f"Environment: {self.environment.__class__.__name__}\n"
        f"Skills: {skill_names}\n"
        f"Runtimes: {runtime_names}\n"
        f"Default Runtime: {self.default_runtime}\n"
        f"Default Teacher Runtime: {self.default_teacher_runtime}"
    )

arefine_skill(skill_name, input_variables, data=None, reapply=False, instructions=None) async

beta v2 of Agent.learn() that is: - compatible with the newer LiteLLM runtimes - compatible with the newer response_model output formats for skills - returns chain of thought reasoning in a legible format

Limitations so far: - single skill at a time - only returns the improved input_template, doesn't modify the skill in place - no iterations/variable cost

Source code in adala/agents/base.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
async def arefine_skill(
    self,
    skill_name: str,
    input_variables: List[str],
    data: Optional[List[Dict]] = None,
    reapply: bool = False,
    instructions: Optional[str] = None,
) -> ImprovedPromptResponse:
    """
    beta v2 of Agent.learn() that is:
    - compatible with the newer LiteLLM runtimes
    - compatible with the newer response_model output formats for skills
    - returns chain of thought reasoning in a legible format

    Limitations so far:
    - single skill at a time
    - only returns the improved input_template, doesn't modify the skill in place
    - no iterations/variable cost
    """

    skill = self.skills[skill_name]
    if not isinstance(skill, TransformSkill):
        raise ValueError(f"Skill {skill_name} is not a TransformSkill")

    # get default runtimes
    runtime = self.get_runtime()
    teacher_runtime = self.get_teacher_runtime()

    # get inputs
    # TODO: replace it with async environment.get_data_batch()
    if data is None:
        predictions = None
    else:
        inputs = InternalDataFrame.from_records(data or [])
        if reapply:
            predictions = await self.skills.aapply(inputs, runtime=runtime)
        else:
            predictions = inputs

    response = await skill.aimprove(
        predictions=predictions,
        teacher_runtime=teacher_runtime,
        target_input_variables=input_variables,
        instructions=instructions,
    )
    return response

arun(input=None, runtime=None) async

Runs the agent on the specified input asynchronously. If no input is specified, the agent will run on the environment until it is exhausted. If input is specified, the agent will run on the input, ignoring the connected genvironment.

Parameters:

Name Type Description Default
input InternalDataFrame

The dataset to run the agent on.

None
runtime str

The name of the runtime to use. Defaults to None, use the default runtime.

None

Returns:

Name Type Description
InternalDataFrame Optional[InternalDataFrame]

The dataset with the agent's predictions.

Source code in adala/agents/base.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
async def arun(
    self, input: InternalDataFrame = None, runtime: Optional[str] = None
) -> Optional[InternalDataFrame]:
    """
    Runs the agent on the specified input asynchronously.
    If no input is specified, the agent will run on the environment until it is exhausted.
    If input is specified, the agent will run on the input, ignoring the connected genvironment.

    Args:
        input (InternalDataFrame): The dataset to run the agent on.
        runtime (str, optional): The name of the runtime to use. Defaults to None, use the default runtime.

    Returns:
        InternalDataFrame: The dataset with the agent's predictions.
    """

    runtime = self.get_runtime(runtime=runtime)
    if not isinstance(runtime, AsyncRuntime):
        raise ValueError(
            "When using asynchronous run with `agent.arun()`, the runtime must be an AsyncRuntime."
        )
    else:
        print(f"Using runtime {type(runtime)}")

    if input is None:
        if self.environment is None:
            raise ValueError("input is None and no environment is set.")
        if not isinstance(self.environment, AsyncEnvironment):
            raise ValueError(
                "When using asynchronous run with `agent.arun()` and noe input, the environment must be an AsyncEnvironment."
            )
        # run on the environment until it is exhausted
        while True:
            try:
                data_batch = await self.environment.get_data_batch(
                    batch_size=runtime.batch_size
                )
                if data_batch.empty:
                    print_text("No more data in the environment. Exiting.")
                    break
            except Exception as e:
                # TODO: environment should raise a specific exception + log error
                print_error(f"Error getting data batch from environment: {e}")
                break
            predictions = await self.skills.aapply(data_batch, runtime=runtime)
            await self.environment.set_predictions(predictions)

    else:
        # single run on the input data
        predictions = await self.skills.aapply(input, runtime=runtime)
        return predictions

environment_validator(v)

Validates and possibly transforms the environment attribute: if the environment is an InternalDataFrame, it is transformed into a StaticEnvironment.

Source code in adala/agents/base.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
@field_validator("environment", mode="before")
def environment_validator(cls, v) -> Environment:
    """
    Validates and possibly transforms the environment attribute:
    if the environment is an InternalDataFrame, it is transformed into a StaticEnvironment.
    """
    logger.debug(f"Validating environment attribute: {v}")
    if isinstance(v, InternalDataFrame):
        v = StaticEnvironment(df=v)
    elif isinstance(v, dict) and "type" in v:
        v = Environment.create_from_registry(v.pop("type"), **v)
    return v

get_runtime(runtime=None)

Retrieves the specified runtime or the default runtime if none is specified.

Parameters:

Name Type Description Default
runtime str

The name of the runtime to retrieve. Defaults to None.

None

Returns:

Name Type Description
Runtime Runtime

The requested runtime.

Raises:

Type Description
ValueError

If the specified runtime is not found.

Source code in adala/agents/base.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def get_runtime(self, runtime: Optional[str] = None) -> Runtime:
    """
    Retrieves the specified runtime or the default runtime if none is specified.

    Args:
        runtime (str, optional): The name of the runtime to retrieve. Defaults to None.

    Returns:
        Runtime: The requested runtime.

    Raises:
        ValueError: If the specified runtime is not found.
    """

    if runtime is None:
        runtime = self.default_runtime
    if runtime not in self.runtimes:
        raise ValueError(f'Runtime "{runtime}" not found.')
    return self.runtimes[runtime]

get_teacher_runtime(runtime=None)

Retrieves the specified teacher runtime or the default runtime if none is specified.

Parameters:

Name Type Description Default
runtime str

The name of the runtime to retrieve. Defaults to None.

None

Returns:

Name Type Description
Runtime Runtime

The requested runtime.

Raises:

Type Description
ValueError

If the specified runtime is not found.

Source code in adala/agents/base.py
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def get_teacher_runtime(self, runtime: Optional[str] = None) -> Runtime:
    """
    Retrieves the specified teacher runtime or the default runtime if none is specified.

    Args:
        runtime (str, optional): The name of the runtime to retrieve. Defaults to None.

    Returns:
        Runtime: The requested runtime.

    Raises:
        ValueError: If the specified runtime is not found.
    """

    if runtime is None:
        runtime = self.default_teacher_runtime
    if runtime not in self.teacher_runtimes:
        raise ValueError(f'Teacher Runtime "{runtime}" not found.')
    runtime = self.teacher_runtimes[runtime]
    if not runtime:
        raise ValueError(
            f"Teacher Runtime is requested, but it was not set."
            f"Please provide a teacher runtime in the agent's constructor explicitly:"
            f"agent = Agent(..., teacher_runtimes={{'default': OpenAIChatRuntime(model='gpt-4')}})"
        )
    return runtime

learn(learning_iterations=3, accuracy_threshold=0.9, update_memory=True, batch_size=None, num_feedbacks=None, runtime=None, teacher_runtime=None)

Enables the agent to learn and improve its skills based on interactions with its environment.

Parameters:

Name Type Description Default
learning_iterations int

The number of iterations for learning. Defaults to 3.

3
accuracy_threshold float

The desired accuracy threshold to reach. Defaults to 0.9.

0.9
update_memory bool

Flag to determine if memory should be updated after learning. Defaults to True.

True
num_feedbacks int

The number of predictions to request feedback for. Defaults to None.

None
runtime str

The runtime to be used for the learning process. Defaults to None.

None
teacher_runtime str

The teacher runtime to be used for the learning process. Defaults to None.

None
Source code in adala/agents/base.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def learn(
    self,
    learning_iterations: int = 3,
    accuracy_threshold: float = 0.9,
    update_memory: bool = True,
    batch_size: Optional[int] = None,
    num_feedbacks: Optional[int] = None,
    runtime: Optional[str] = None,
    teacher_runtime: Optional[str] = None,
):
    """
    Enables the agent to learn and improve its skills based on interactions with its environment.

    Args:
        learning_iterations (int, optional): The number of iterations for learning. Defaults to 3.
        accuracy_threshold (float, optional): The desired accuracy threshold to reach. Defaults to 0.9.
        update_memory (bool, optional): Flag to determine if memory should be updated after learning. Defaults to True.
        num_feedbacks (int, optional): The number of predictions to request feedback for. Defaults to None.
        runtime (str, optional): The runtime to be used for the learning process. Defaults to None.
        teacher_runtime (str, optional): The teacher runtime to be used for the learning process. Defaults to None.
    """

    runtime = self.get_runtime(runtime=runtime)
    teacher_runtime = self.get_teacher_runtime(runtime=teacher_runtime)

    for iteration in range(learning_iterations):
        print_text(
            f"\n\n=> Iteration #{iteration}: Getting feedback, analyzing and improving ..."
        )

        inputs = self.environment.get_data_batch(batch_size=batch_size)
        predictions = self.skills.apply(inputs, runtime=runtime)
        feedback = self.environment.get_feedback(
            self.skills, predictions, num_feedbacks=num_feedbacks
        )
        # TODO: this is just pretty printing - remove later for efficiency
        print("Predictions and feedback:")
        print_dataframe(
            feedback.feedback.rename(
                columns=lambda x: x + "__fb" if x in predictions.columns else x
            ).merge(predictions, left_index=True, right_index=True)
        )
        # -----------------------------
        skill_mismatch = feedback.match.fillna(True) == False
        has_errors = skill_mismatch.any(axis=1).any()
        if not has_errors:
            print_text("No errors found!")
            continue
        first_skill_with_errors = skill_mismatch.any(axis=0).idxmax()

        accuracy = feedback.get_accuracy()
        # TODO: iterating over skill can be more complex, and we should take order into account
        for skill_output, skill_name in self.skills.get_skill_outputs().items():
            skill = self.skills[skill_name]
            if skill.frozen:
                continue

            print_text(
                f'Skill output to improve: "{skill_output}" (Skill="{skill_name}")\n'
                f"Accuracy = {accuracy[skill_output] * 100:0.2f}%",
                style="bold red",
            )

            old_instructions = skill.instructions
            skill.improve(
                predictions, skill_output, feedback, runtime=teacher_runtime
            )

            if is_running_in_jupyter():
                highlight_differences(old_instructions, skill.instructions)
            else:
                print_text(skill.instructions, style="bold green")

            if skill_name == first_skill_with_errors:
                break

    print_text("Train is done!")

run(input=None, runtime=None, **kwargs)

Runs the agent on the specified dataset.

Parameters:

Name Type Description Default
input InternalDataFrame

The dataset to run the agent on.

None
runtime str

The name of the runtime to use. Defaults to None, use the default runtime.

None
kwargs

Additional keyword arguments to pass to the runtime.

{}

Returns: InternalDataFrame: The dataset with the agent's predictions.

Source code in adala/agents/base.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def run(
    self, input: InternalDataFrame = None, runtime: Optional[str] = None, **kwargs
) -> InternalDataFrame:
    """
    Runs the agent on the specified dataset.

    Args:
        input (InternalDataFrame): The dataset to run the agent on.
        runtime (str, optional): The name of the runtime to use. Defaults to None, use the default runtime.
        kwargs: Additional keyword arguments to pass to the runtime.
    Returns:
        InternalDataFrame: The dataset with the agent's predictions.
    """
    if input is None:
        if self.environment is None:
            raise ValueError("input is None and no environment is set.")
        input = self.environment.get_data_batch(None)
    runtime = self.get_runtime(runtime=runtime)
    predictions = self.skills.apply(input, runtime=runtime)
    return predictions

runtimes_validator(v)

Validates and creates runtimes

Source code in adala/agents/base.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
@field_validator("runtimes", "teacher_runtimes", mode="before")
def runtimes_validator(cls, v) -> Dict[str, Union[Runtime, AsyncRuntime]]:
    """
    Validates and creates runtimes
    """
    out = {}
    for runtime_name, runtime_value in v.items():
        if isinstance(runtime_value, dict):
            if "type" not in runtime_value:
                raise ValueError(
                    f"Runtime {runtime_name} must have a 'type' field to specify the runtime type."
                )
            type_name = runtime_value.pop("type")
            runtime_value = Runtime.create_from_registry(
                type=type_name, **runtime_value
            )
        out[runtime_name] = runtime_value
    return out

select_skill_to_train(feedback, accuracy_threshold)

Selects the skill to train based on the feedback signal.

Parameters:

Name Type Description Default
feedback Feedback

The feedback signal.

required
accuracy_threshold float

The accuracy threshold to use for selecting the skill to train.

required

Returns:

Name Type Description
str str

The name of the skill to train.

str str

The name of the skill output to train.

float float

The accuracy score of the skill to train.

Source code in adala/agents/base.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def select_skill_to_train(
    self, feedback: EnvironmentFeedback, accuracy_threshold: float
) -> Tuple[str, str, float]:
    """
    Selects the skill to train based on the feedback signal.

    Args:
        feedback (Feedback): The feedback signal.
        accuracy_threshold (float): The accuracy threshold to use for selecting the skill to train.

    Returns:
        str: The name of the skill to train.
        str: The name of the skill output to train.
        float: The accuracy score of the skill to train.

    """

    # Use ground truth signal to find the skill to improve
    # TODO: what if it is not possible to estimate accuracy per skill?
    accuracy = feedback.get_accuracy()
    train_skill_name, train_skill_output, acc_score = "", "", None
    for skill_output, skill_name in self.skills.get_skill_outputs().items():
        if skill_output in accuracy and accuracy[skill_output] < accuracy_threshold:
            train_skill_name, train_skill_output = skill_name, skill_output
            acc_score = accuracy[skill_output]
            break

    return train_skill_name, train_skill_output, acc_score

skills_validator(v)

Validates and possibly transforms the skills attribute.

Source code in adala/agents/base.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@field_validator("skills", mode="before")
def skills_validator(cls, v) -> SkillSet:
    """
    Validates and possibly transforms the skills attribute.
    """
    if isinstance(v, SkillSet):
        return v
    elif isinstance(v, Skill):
        return LinearSkillSet(skills=[v])
    elif isinstance(v, list):
        return LinearSkillSet(skills=v)
    else:
        raise ValueError(
            f"skills must be of type SkillSet or Skill, but received type {type(v)}"
        )

verify_input_parameters()

Verifies that the input parameters are valid.

Source code in adala/agents/base.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
@model_validator(mode="after")
def verify_input_parameters(self):
    """
    Verifies that the input parameters are valid."""

    def _raise_default_runtime_error(val, runtime, runtimes, default_value):
        print_error(
            f"The Agent.{runtime} is set to {val}, "
            f"but this runtime is not available in the list: {list(runtimes)}. "
            f"Please choose one of the available runtimes and initialize the agent again, for example:\n\n"
            f"agent = Agent(..., {runtime}='{default_value}')\n\n"
            f"Make sure the default runtime is available in the list of runtimes. For example:\n\n"
            f"agent = Agent(..., runtimes={{'{default_value}': OpenAIRuntime(model='gpt-4')}})\n\n"
        )
        raise ValueError(f"default runtime {val} not found in provided runtimes.")

    if self.default_runtime not in self.runtimes:
        _raise_default_runtime_error(
            self.default_runtime, "default_runtime", self.runtimes, "openai"
        )
    if self.default_teacher_runtime not in self.teacher_runtimes:
        _raise_default_runtime_error(
            self.default_teacher_runtime,
            "default_teacher_runtime",
            self.teacher_runtimes,
            "openai-gpt4",
        )
    return self

create_agent_from_dict(json_dict)

Creates an agent from a JSON dictionary.

Parameters:

Name Type Description Default
json_dict Dict

The JSON dictionary to create the agent from.

required

Returns:

Name Type Description
Agent

The created agent.

Source code in adala/agents/base.py
448
449
450
451
452
453
454
455
456
457
458
459
460
def create_agent_from_dict(json_dict: Dict):
    """
    Creates an agent from a JSON dictionary.

    Args:
        json_dict (Dict): The JSON dictionary to create the agent from.

    Returns:
        Agent: The created agent.
    """

    agent = Agent(**json_dict)
    return agent

create_agent_from_file(file_path)

Creates an agent from a YAML file: 1. Define agent reasoning workflow in workflow.yml:

- name: reasoning
  type: sample_transform
  sample_size: 10
  instructions: "Think step-by-step."
  input_template: "Question: {question}"
  output_template: "{reasoning}"

- name: numeric_answer
  type: transform
  instructions: >
    Given math question and reasoning, provide only numeric answer after `Answer: `, for example:
    Question: <math question>
    Reasoning: <reasoning>
    Answer: <your numerical answer>
  input_template: >
    Question: {question}
    Reasoning: {reasoning}
  output_template: >
    Answer: {answer}
  1. Run adala math reasoning workflow on the gsm8k dataset:
adala run --input gsm8k --dataset-config main --dataset-split test --workflow workflow.yml

Parameters:

Name Type Description Default
file_path str

The path to the YAML file to create the agent from.

required

Returns:

Name Type Description
Agent

The created agent.

Source code in adala/agents/base.py
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def create_agent_from_file(file_path: str):
    """
    Creates an agent from a YAML file:
    1. Define agent reasoning workflow in `workflow.yml`:

    ```yaml
    - name: reasoning
      type: sample_transform
      sample_size: 10
      instructions: "Think step-by-step."
      input_template: "Question: {question}"
      output_template: "{reasoning}"

    - name: numeric_answer
      type: transform
      instructions: >
        Given math question and reasoning, provide only numeric answer after `Answer: `, for example:
        Question: <math question>
        Reasoning: <reasoning>
        Answer: <your numerical answer>
      input_template: >
        Question: {question}
        Reasoning: {reasoning}
      output_template: >
        Answer: {answer}
    ```

    2. Run adala math reasoning workflow on the `gsm8k` dataset:

    ```sh
    adala run --input gsm8k --dataset-config main --dataset-split test --workflow workflow.yml
    ```

    Args:
        file_path (str): The path to the YAML file to create the agent from.

    Returns:
        Agent: The created agent.
    """

    with open(file_path, "r") as file:
        json_dict = yaml.safe_load(file)
    if isinstance(json_dict, list):
        json_dict = {"skills": json_dict}
    return create_agent_from_dict(json_dict)